资源类型

期刊论文 130

年份

2023 15

2022 11

2021 11

2020 6

2019 6

2018 7

2017 9

2016 6

2015 3

2014 3

2013 4

2012 3

2011 10

2010 7

2009 7

2008 4

2007 3

2006 6

2004 1

2003 1

展开 ︾

关键词

地震预测 2

汶川地震 2

湍流边界层 2

直接数值模拟 2

相干结构 2

(GaxIn1−x)2O3薄膜;带隙可调谐;磁控溅射 1

3D支架平台 1

4D打印 1

5G 1

n-Si 1

三维 1

下穿 1

临震信号 1

亚分级 1

信息中心网络;拥塞控制;跨层优化;多跳无线网络 1

先进制造 1

光伏/光电化学器件 1

光阳极 1

冲蚀 1

展开 ︾

检索范围:

排序: 展示方式:

Free vibration analysis of functionally graded porous curved nanobeams on elastic foundation in hygro–thermo–magnetic

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 584-605 doi: 10.1007/s11709-023-0916-7

摘要: Herein, a two-node beam element enriched based on the Lagrange and Hermite interpolation function is proposed to solve the governing equation of a functionally graded porous (FGP) curved nanobeam on an elastic foundation in a hygro–thermo–magnetic environment. The material properties of curved nanobeams change continuously along the thickness via a power-law distribution, and the porosity distributions are described by an uneven porosity distribution. The effects of magnetic fields, temperature, and moisture on the curved nanobeam are assumed to result in axial loads and not affect the mechanical properties of the material. The equilibrium equations of the curved nanobeam are derived using Hamilton’s principle based on various beam theories, including the classical theory, first-order shear deformation theory, and higher-order shear deformation theory, and the nonlocal elasticity theory. The accuracy of the proposed method is verified by comparing the results obtained with those of previous reliable studies. Additionally, the effects of different parameters on the free vibration behavior of the FGP curved nanobeams are investigated comprehensively.

关键词: functionally graded porous material     curved nanobeam     hygro–thermo–magnetic     enriched finite element method    

Manufacturing technique and performance of functionally graded concrete segment in shield tunnel

Baoguo MA, Dinghua ZOU, Li XU

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 101-104 doi: 10.1007/s11709-009-0011-8

摘要: The quality of segment is very important to the service life of shield tunnel. Concerning the complex engineering environment of the Wuhan Yangtze River Shield Tunnel, the principle of functionally graded materials was introduced to design and produce the functionally graded concrete segment (FGCS). Its key manufacturing technique was proposed and its performance was tested.

关键词: shield tunnel     functionally graded concrete segment (FGCS)     manufacturing technology     performance    

Axisymmetric loading on nanoscale multilayered media

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 152-164 doi: 10.1007/s11709-022-0895-0

摘要: Multilayered nanoscale structures are used in several applications. Because the effect of surface energy becomes nontrivial at such a small scale, a modified continuum theory is required to accurately predict their mechanical behaviors. A Gurtin–Murdoch continuum model of surface elasticity is implemented to establish a computational scheme for investigating an elastic multilayered system under axisymmetric loads with the incorporation of surface/interface energy. Each layer stiffness matrix is derived based on the general solutions of stresses and displacements obtained in the form of the Hankel integral transform. Numerical solutions to the global equation, which are formulated based on the continuity conditions of tractions and displacements across interfaces between layers, yield the displacements at each layer interface and on the top surface of the multilayered medium. The numerical solutions indicate that the elastic responses of multilayered structures are affected significantly by the surface material properties of both the top surface and interfaces, and that they become size dependent. In addition, the indentation problem of a multilayered nanoscale elastic medium under a rigid frictionless cylindrical punch is investigated to demonstrate the application of the proposed solution scheme.

关键词: functionally graded layer     Gurtin–Murdoch surface elasticity     multilayered medium     size dependency     stiffness matrix    

A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1453-1479 doi: 10.1007/s11709-021-0767-z

摘要: This paper proposes a new Deep Feed-forward Neural Network (DFNN) approach for damage detection in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. In the proposed approach, the DFNN model is developed based on a data set containing 20 000 samples of damage scenarios, obtained via finite element (FE) simulation, of the FG-CNTRC plates. The elemental modal kinetic energy (MKE) values, calculated from natural frequencies and translational nodal displacements of the structures, are utilized as input of the DFNN model while the damage locations and corresponding severities are considered as output. The state-of-the art Exponential Linear Units (ELU) activation function and the Adamax algorithm are employed to train the DFNN model. Additionally, in order to enhance the performance of the DFNN model, the mini-batch and early-stopping techniques are applied to the training process. A trial-and-error procedure is implemented to determine suitable parameters of the network such as the number of hidden layers and the number of neurons in each layer. The accuracy and capability of the proposed DFNN model are illustrated through two distinct configurations of the CNT-fibers constituting the FG-CNTRC plates including uniform distribution (UD) and functionally graded-V distribution (FG-VD). Furthermore, the performance and stability of the DFNN model with the consideration of noise effects on the input data are also investigated. Obtained results indicate that the proposed DFNN model is able to give sufficiently accurate damage detection outcomes for the FG-CNTRC plates for both cases of noise-free and noise-influenced data.

关键词: damage detection     deep feed-forward neural networks     functionally graded carbon nanotube-reinforced composite plates     modal kinetic energy    

Nonlinear dynamic analysis of functionally graded carbon nanotube-reinforced composite plates using MISQ20

《结构与土木工程前沿(英文)》   页码 1072-1085 doi: 10.1007/s11709-023-0951-4

摘要: The main objective of this study is to further extend the mixed integration smoothed quadrilateral element with 20 unknowns of displacement (MISQ20) to investigate the nonlinear dynamic responses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates with four types of carbon nanotube distributions. The smooth finite element method is used to enhance the accuracy of the Q4 element and avoid shear locking without using any shear correction factors. This method yields accurate results even if the element exhibits a concave quadrilateral shape and reduces the error when the element meshing is rough. Additionally, the element stiffness matrix is established by integrating the boundary of the smoothing domains. The motion equation of the FG-CNTRC plates is solved by adapting the Newmark method combined with the Newton–Raphson algorithm. Subsequently, the calculation program is coded in the MATLAB software and verified by comparing it with other published solutions. Finally, the effects of the input parameters on the nonlinear vibration of the plates are investigated.

关键词: carbon nanotube     MISQ20     FG-CNTRC plate     nonlinear vibration     nonlinear dynamic analysis     SFEM    

A novel finite element formulation for static bending analysis of functionally graded porous sandwich

Van Chinh NGUYEN; Trung Thanh TRAN; Trung NGUYEN-THOI; Quoc-Hoa PHAM

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1599-1620 doi: 10.1007/s11709-022-0891-4

摘要: This article aims to propose a finite element formulation based on Quasi-3D theory for the static bending analysis of functionally graded porous (FGP) sandwich plates. The FGP sandwich plates consist of three layers including the bottom skin of homogeneous metal, the top skin of fully ceramic and the FGP core layer with uneven porosity distribution. A quadrilateral (Q4) element with nine degrees of freedom (DOFs) per node is derived and employed in analyzing the static bending response of the plate under uniform and/or sinusoidally distributed loads. The accuracy of the present finite element formulation is verified by comparing the obtained numerical results with the published results in the literature. Then, some numerical examples are performed to examine the effects of the parameters including power-law index k and porosity coefficient ξ on the static bending response of rectangular FGP sandwich plates. In addition, a problem with a complicated L-shape model is conducted to illustrate the superiority of the proposed finite element method.

关键词: sandwich plates     functionally graded porous     static bending     Quasi-3D theory     Q4 element    

Static and dynamic analysis of functionally graded fluid-infiltrated porous skew and elliptical nanoplates

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 477-502 doi: 10.1007/s11709-023-0918-5

摘要: The analysis of static bending and free and forced vibration responses of functionally graded fluid-infiltrated porous (FGFP) skew and elliptical nanoplates placed on Pasternak’s two-parameter elastic foundation is performed for the first time using isogeometric analysis (IGA) based on the non-uniform rational B-splines (NURBSs) basis function. Three types of porosity distributions affect the mechanical characteristics of materials: symmetric distribution, upper asymmetric distribution, and lower asymmetric distribution. The stress–strain relationship for Biot porous materials was determined using the elastic theory. The general equations of motion of the nanoplates were established using the four-unknown shear deformation plate theory in conjunction with the nonlocal elastic theory and Hamilton’s principle. A computer program that uses IGA to determine the static bending and free and forced vibration of a nanoplate was developed on MATLAB software platform. The accuracy of the computational program was validated via numerical comparison with confidence assertions. This set of programs presents the influence of the following parameters on the static bending and free and forced vibrations of nanoplates: porosity distribution law, porosity coefficient and geometrical parameters, elastic foundation, deviation angle, nonlocal coefficient, different boundary conditions, and Skempton coefficients. The numerical findings demonstrated the uniqueness of the FGFP plate’s behavior when the porosities are saturated with liquid compared with the case without liquid. The findings of this study have significant implications for engineers involved in the design and fabrication of the aforementioned type of structures. Furthermore, this can form the basis for future research on the mechanical responses of the structures.

关键词: static bending     free and forced vibrations     nonlocal theory     isogeometric analysis     fluid-infiltrated porous nanoplates    

Implicit Heaviside filter with high continuity based on suitably graded THB splines

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 14-14 doi: 10.1007/s11465-021-0670-2

摘要: The variable density topology optimization (TO) method has been applied to various engineering fields because it can effectively and efficiently generate the conceptual design for engineering structures. However, it suffers from the problem of low continuity resulting from the discreteness of both design variables and explicit Heaviside filter. In this paper, an implicit Heaviside filter with high continuity is introduced to generate black and white designs for TO where the design space is parameterized by suitably graded truncated hierarchical B-splines (THB). In this approach, the fixed analysis mesh of isogeometric analysis is decoupled from the design mesh, whose adaptivity is implemented by truncated hierarchical B-spline subjected to an admissible requirement. Through the intrinsic local support and high continuity of THB basis, an implicit adaptively adjusted Heaviside filter is obtained to remove the checkboard patterns and generate black and white designs. Threefold advantages are attained in the proposed filter: a) The connection between analysis mesh and adaptive design mesh is easily established compared with the traditional adaptive TO method using nodal density; b) the efficiency in updating design variables is remarkably improved than the traditional implicit sensitivity filter based on B-splines under successive global refinement; and c) the generated black and white designs are preliminarily compatible with current commercial computer aided design system. Several numerical examples are used to verify the effectiveness of the proposed implicit Heaviside filter in compliance and compliant mechanism as well as heat conduction TO problems.

关键词: topology optimization     truncated hierarchical B-spline     isogeometric analysis     black and white designs     Heaviside filter    

PICRUSt2 functionally predicts organic compounds degradation and sulfate reduction pathways in an acidogenic

《环境科学与工程前沿(英文)》 doi: 10.1007/s11783-021-1481-8

摘要:

For comprehensive insights into the influences of sulfate on performance, microbial community and metabolic pathways in the acidification phase of a two-phase anaerobic system, a laboratory-scale acidogenic bioreactor was continuously operated to treat wastewater with elevated sulfate concentrations from 2000 to 14000 mg/L.

关键词: Acidogenic phase reactor     High-sulfate wastewater     Sulfate reduction     Acidogenic fermentation     PICRUSt2    

Endochronic damage constitutive model for fully-graded aggregate mass concrete

SONG Yupu, WANG Huailiang

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 274-280 doi: 10.1007/s11709-007-0035-x

摘要: The behavior of deformation and strength of a fully-graded aggregate concrete under complex stress state is the basis of the nonlinear analysis and design for mass concrete structures such as concrete dams. In this paper, based on the combined endochronic theory with damage mechanics and on the quantities of experimental data, an endochronic damage constitutive model suitable for various aggregate grade concrete is proposed. This model takes into consideration the scale effect and the effect of wet screen sieve of aggregate in which the concept of yield surface is not needed and the difference of damage evolution rule of various graded aggregate concrete is a concern. The proposed model is used to analyze the deformation and strength of fully-graded aggregate mass concrete and the wet screened aggregate concrete specimens. The calculated results are in good agreement with experimental data, which can be used as a guide for the design of arch dams and other mass concrete structures.

关键词: concept     surface     design     concern     strength    

Analytical solution for SH wave propagating through a graded plate of metamaterial

Jinfeng ZHAO, Yongdong PAN, Zheng ZHONG

《机械工程前沿(英文)》 2011年 第6卷 第3期   页码 301-307 doi: 10.1007/s11465-011-0238-7

摘要:

A physical model for the shear horizontal (SH) wave propagating from left-handed material (LHM) through a graded or transition layer to right-handed material (RHM) has been proposed in this paper. After the comparison of the basic wave equations of the electromagnetic, longitudinal, and SH waves, it is found that they take similar differential form. The analytical solutions have been found for power law, hyperbolic, and polynomial profiles. Numerical waveforms of the amplitude and phase of the displacement are obtained for the corresponding profiles. It is found that the waveforms are symmetric for the power law and hyperbolic profiles, and that the waveform for the polynomial profile is shifted and non-symmetric. The shift along with the anti-symmetric profile may provide a way to monitor the wave behavior of the metamaterials.

关键词: left-handed material (LHM)     metamaterial     shear horizontal (SH) wave    

Yue’s solution of classical elasticity in

Zhong-qi Quentin YUE

《结构与土木工程前沿(英文)》 2015年 第9卷 第3期   页码 215-249 doi: 10.1007/s11709-015-0298-6

摘要: This paper presents the exact and complete fundamental singular solutions for the boundary value problem of a -layered elastic solid of either transverse isotropy or isotropy subject to body force vector at the interior of the solid. The layer number is an arbitrary nonnegative integer. The mathematical theory of linear elasticity is one of the most classical field theories in mechanics and physics. It was developed and established by many well-known scientists and mathematicians over 200 years from 1638 to 1838. For more than 150 years from 1838 to present, one of the remaining key tasks in classical elasticity has been the mathematical derivation and formulation of exact solutions for various boundary value problems of interesting in science and engineering. However, exact solutions and/or fundamental singular solutions in closed form are still very limited in literature. The boundary-value problems of classical elasticity in -layered and graded solids are also one of the classical problems challenging many researchers. Since 1984, the author has analytically and rigorously examined the solutions of such classical problems using the classical mathematical tools such as Fourier integral transforms. In particular, he has derived the exact and complete fundamental singular solutions for elasticity of either isotropic or transversely isotropic layered solids subject to concentrated loadings. The solutions in -layered or graded solids can be calculated with any controlled accuracy in association with classical numerical integration techniques. Findings of this solution formulation are further used in the companion paper for mathematical verification of the solutions and further applications for exact and complete solutions of other problems in elasticity, elastodynamics, poroelasticty and thermoelasticity. The mathematical formulations and solutions have been named by other researchers as Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution.

关键词: elasticity     solution     layered solid     graded material    

Application of granular solid hydrodynamics to a well-graded unbound granular material undergoing triaxial

Shixiong SONG, Qicheng SUN, Feng JIN, Chuhan ZHANG

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 83-88 doi: 10.1007/s11709-012-0148-8

摘要: Unbound granular materials (UGMs) are widely used as a base or a subbase in pavement construction. They are generally well graded and exhibit a higher peak strength than that of conventional cohesionless granular materials. By using a simplified version of granular solid hydrodynamics (GSH), a set of GSH material constants is determined for a UGM material. The deviatoric stress and volumetric strain caused by triaxial compression are calculated and then compared with experimental data. The results indicate that the GSH theory is able to describe such a special type of granular materials.

关键词: granular solid hydrodynamics     unbound granular material (UGM)     triaxial tests    

Chemically reactive solute transfer in a boundary layer slip flow along a stretching cylinder

Swati Mukhopadhyay

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 385-391 doi: 10.1007/s11705-011-1101-4

摘要: This paper presents the distribution of a solute undergoing a first order chemical reaction in an axisymmetric laminar boundary layer flow along a stretching cylinder. Velocity slip condition at the boundary is used instead of no-slip condition. Similarity transformations are used to convert the partial differential equations corresponding to momentum and concentration into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by the shooting method. The velocity decreases with increasing slip parameter. The skin friction as well as the mass transfer rate at the surface is larger for a cylinder than for a flat plate.

关键词: boundary layer     stretching cylinder     partial slip     mass transfer     similarity solution    

Modeling nanostructured catalyst layer in PEMFC and catalyst utilization

Jiejing ZHANG, Pengzhen CAO, Li XU, Yuxin WANG

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 297-302 doi: 10.1007/s11705-011-1201-1

摘要: A lattice model of the nanoscaled catalyst layer structure in proton exchange membrane fuel cells (PEMFC) was established by Monte Carlo method. The model takes into account all the four components in a typical PEMFC catalyst layer: platinum (Pt), carbon, ionomer and pore. The elemental voxels in the lattice were set fine enough so that each average sized Pt particulate in Pt/C catalyst can be represented. Catalyst utilization in the modeled catalyst layer was calculated by counting up the number of facets of Pt voxels where “three phase contact” are met. The effects of some factors, including porosity, ionomer content, Pt/C particle size and Pt weight percentage in the Pt/C catalyst, on catalyst utilization were investigated and discussed.

关键词: catalyst layer     PEM fuel cell     lattice model     Monte Carlo method     catalyst utilization    

标题 作者 时间 类型 操作

Free vibration analysis of functionally graded porous curved nanobeams on elastic foundation in hygro–thermo–magnetic

期刊论文

Manufacturing technique and performance of functionally graded concrete segment in shield tunnel

Baoguo MA, Dinghua ZOU, Li XU

期刊论文

Axisymmetric loading on nanoscale multilayered media

期刊论文

A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced

期刊论文

Nonlinear dynamic analysis of functionally graded carbon nanotube-reinforced composite plates using MISQ20

期刊论文

A novel finite element formulation for static bending analysis of functionally graded porous sandwich

Van Chinh NGUYEN; Trung Thanh TRAN; Trung NGUYEN-THOI; Quoc-Hoa PHAM

期刊论文

Static and dynamic analysis of functionally graded fluid-infiltrated porous skew and elliptical nanoplates

期刊论文

Implicit Heaviside filter with high continuity based on suitably graded THB splines

期刊论文

PICRUSt2 functionally predicts organic compounds degradation and sulfate reduction pathways in an acidogenic

期刊论文

Endochronic damage constitutive model for fully-graded aggregate mass concrete

SONG Yupu, WANG Huailiang

期刊论文

Analytical solution for SH wave propagating through a graded plate of metamaterial

Jinfeng ZHAO, Yongdong PAN, Zheng ZHONG

期刊论文

Yue’s solution of classical elasticity in

Zhong-qi Quentin YUE

期刊论文

Application of granular solid hydrodynamics to a well-graded unbound granular material undergoing triaxial

Shixiong SONG, Qicheng SUN, Feng JIN, Chuhan ZHANG

期刊论文

Chemically reactive solute transfer in a boundary layer slip flow along a stretching cylinder

Swati Mukhopadhyay

期刊论文

Modeling nanostructured catalyst layer in PEMFC and catalyst utilization

Jiejing ZHANG, Pengzhen CAO, Li XU, Yuxin WANG

期刊论文